

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

Probability & Statistics 1

Friday

11 JUNE 2004

Morning

1 hour 20 minutes

2641

Additional materials: Answer booklet Graph paper List of Formulae (MF8)

TIME 1 hour 20 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 60.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

This question paper consists of 4 printed pages.

1 Two people with the same occupation were asked to give ratings out of 100 for each of five different aspects of their job. Their ratings are given in the table below.

Aspect	A	В	С	D	E
Person 1	71	63	84	57	64
Person 2	12	62	20	85	31

- (i) Calculate Spearman's rank correlation coefficient for the above data. [4]
- (ii) Explain what your answer to part (i) tells you about the two people's ratings. [1]
- 2 A child's game uses five bricks. One is blue, one is green, one is yellow and two are white. The five bricks are arranged in a line.
 - (i) How many different possible arrangements of the colours are there? [2]
 - (ii) Assuming that all the arrangements in part (i) are equally likely, find the probability that the two white bricks are at the ends of the line. [3]
- 3 Paul plays a game in which a fair coin is spun 4 times. If the number of heads is 0 or 1, Paul loses £5, if the number of heads is 2, Paul wins £5 and if the number of heads is 3 or 4, Paul wins £10. Let $\pounds W$ be the amount which Paul wins in one randomly chosen game.

(i) Show that
$$P(W = -5) = \frac{5}{16}$$
. [2]

(ii) Copy and complete the table below to show the probability distribution of *W*. [2]

w	-5	5	10
P(W=w)	$\frac{5}{16}$		

- (iii) Show that $E(W) = \frac{55}{16}$. [2]
- (iv) Find Var(W).

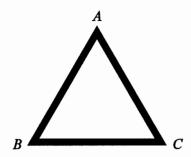
[3]

4 A student was experimenting with an electrical circuit in which the resistance of one component could be varied. The student increased the resistance in fixed steps from 10 units to 100 units and measured the voltage drop when a fixed current was passed through it. The table below gives the student's results.

Resistance, x units	10	20	30	40	50	60	70	80	90	100
Voltage drop, y units	149	202	253	307	353	407	443	451	550	602
$[n = 10, \Sigma x = 550, \Sigma y = 3717, \Sigma x^2 = 38500, \Sigma y^2 = 1576075, \Sigma xy = 244260.]$										

- (i) The student wished to use his experimental data to estimate the resistance which would be needed for the voltage drop to be 220 units. Calculate the equation of the appropriate regression line and use it to estimate the resistance, x, which would correspond to y = 220. [6]
- (ii) Calculate the product moment correlation coefficient for the data and use it to comment on the reliability of the estimate found in part (i). [3]
- 5 Andy plays a lottery game once a week for 10 weeks. He knows that he has a probability of $\frac{1}{57}$ of winning each time he plays. Let X be the number of weeks out of 10 in which Andy wins.
 - (i) State the distribution of X, giving the values of any parameters, and state one assumption required to use this distribution as a suitable model. [3]
 - (ii) Calculate
 - (a) P(X=2), [3]
 - (b) P(X > 2). [3]
 - (iii) Write down the value of E(X).
- 6 The table below refers to the mass, m kg, of each of a sample of 60 dogs examined in a vet's surgery.

Mass, <i>m</i> kg	$0 \leq m < 5$	$5 \leq m < 10$	$10 \leq m < 15$	$15 \leq m < 20$	$20 \leq m < 30$	$30 \leq m < 50$
Frequency	2	7	17	19	8	7


- (i) Draw a cumulative frequency graph for the data in the table.
- (ii) Use your cumulative frequency graph to estimate the median and the interquartile range for the data. [3]
- (iii) You are now given that the minimum mass in the sample of 60 dogs was 4 kg and the maximum was 47 kg. Use your estimates from part (ii) to draw a box-and-whisker plot of the data. [3]
- (iv) Give one feature of the data which you can deduce from a box-and-whisker plot more easily than from a cumulative frequency graph. [1]

[Question 7 is printed overleaf.]

[1]

[3]

7 Siân is involved in a game in which she runs along three paths in the form of a triangle, as in the diagram below.

When she arrives at a corner, she chooses her subsequent direction according to the following rules.

- When she is at A, she chooses path AB with probability $\frac{2}{3}$ and she chooses path AC with probability $\frac{1}{3}$.
- When she is at *B*, she chooses path *BA* with probability $\frac{3}{4}$ and she chooses path *BC* with probability $\frac{1}{4}$.
- When she is at C, she chooses path CA with probability $\frac{4}{5}$ and she chooses path CB with probability $\frac{1}{5}$.
- Once she has chosen a particular path she runs to the other end of the path.
- She starts at A.

(i) Show that the probability that she returns to A after choosing two paths is $\frac{23}{30}$.	[3]
(ii) Find the probability that she returns to A after choosing three paths.	[4]
(iii) Find the probability that she is at B after four choices.	[5]

2641

June 2004

1 (i)	Aspect	А	В	С	D	E				
. (.)	Person 1	71	63	84	57	64		B1		Correct ranks (or reverse)
	Person 2	12	62	20	85	31				2
	Rank 1 Rank 2	2 5	4 2	1 4	5	3 3		M1		Attempt to find d (or d^2) from
	d	-3	2	-3	4	0				ranked or ordered data
	$\Sigma d^2 = 9$	+4+	9 + 1	6 + 0 :	= 38					
	Spearma	an's	rank c	orrela	tion					
	Coefficie	ent =	$1 - \frac{6 \times 3}{5 \times 3}$	$\frac{38}{34} = \frac{-9}{40}$	=-0.9			M1		Correct formula for
			0^2	24 10				A1		Spearman used and $ \mathbf{r} < 1$
								/\1		Correct answer -0.9 or $\frac{-9k}{10k}$
									4	сао
									4	
(ii)	Spearma	an's	rank c	orrela	tion co	efficient		B1		Comment in context,
~ /	shows th	nat th	ne two	peopl	e have	differen				consistent with r _s value
	opposite		-				t		4	r < 1
	when co	onsia	ering a	aspect	s of the	eir jod			1	
2 (i)	Number	ofn	occible	arrar	naemor	ote - 5!	- 60	M1		5! or 120 seen (not in ${}^{5}C_{3}$)
- ()	Number	or p	USSIDIE	anai	igemei	10^{-2}	- 00			
								A1	2	60, cao
									-	
(ii)	Number	of a	rrange	ments	in whi	ch the w	/hite			
	bricks ar							M1		3! Seen for either case
	or Number	ofa	rango	monte	in whi	ch hoth				
	bricks ar		•					M1		their 3! Divided by their (i)
	Therefor		white	orioko	oro ot	aaab an	d)			
		,	$=\frac{6}{60}$ =		aleal	eachen	u)			
		60	60	- 0.1						
	or P(bot	h wh	ite brid	cks at	either e	end)				
			^{2!} = 0			,				
		6	U U							
	or P(whi	ite at	each	end o	r both a	at either				
			+ 0.2					A1		0.1 or 0.2 or 0.3 $\frac{k}{10k}$ or $\frac{k}{5k}$
									3	ion on
									3	or $\frac{3k}{10k}$
	1									

Final Mark Scheme

2641

3 (i)	Let X = number of heads in 4 randomly chosen spins of the coin. $P(W = -5) = P(X = 0 \text{ or } 1) = \frac{1}{16} + \frac{4}{16}$ $= \frac{5}{16} \text{ AG}$	M1 A1 2	Attempt to find P(X = 0) or P(X = 1) Wholly correct and convincing attempt (allow decimals)
(ii)	Distribution table for X	M1	A clear attempt to derive $P(W = 5)$ or $P(W = 10)$
	x 0 1 2 3 4 P(X = x) $\frac{1}{16}$ $\frac{4}{16}$ $\frac{6}{16}$ $\frac{4}{16}$ $\frac{1}{16}$	A1	Wholly correct table
	Distribution tale for Ww-5510P(W = w) $\frac{5}{16}$ $\frac{6}{16}$ $\frac{5}{16}$	2	
(iii)	$E(W) = (-5) \times \frac{5}{16} + 5 \times \frac{6}{16} + 10 \times \frac{5}{16}$	M1	Use of Σwp for <i>their</i> distribution table, at least 2 wp terms added
	$= \frac{-25+30+50}{16} = \frac{55}{16} (= 3.4375) \text{ AG}$	A1 2	Wholly correct method
(iv)	$E(W^{2}) = (-5)^{2} \times \frac{5}{16} + 5^{2} \times \frac{6}{16} + 10^{2} \times \frac{5}{16}$ $= \frac{775}{16}$	M1	Use of $\Sigma w^2 p$ for <i>their</i> distribution table, at least 2 $w^2 p$ terms added
	So Var(W) = E(W ²) - [E(W)] ² = $\left(\frac{775}{16}\right) - \left(\frac{55}{16}\right)^{2}$	M1	Subtracting (<i>their</i> mean) ²
	$=\frac{9375}{256} = 36.62 = 36.6 (3 \text{ sf})$	A1 3	9375 <i>k</i> 256 <i>k</i> or a.r.t. 36.6

June 2004

4 (i)	Since x is a controlled variable, only the y on x line is appropriate	M1	Use of <i>y</i> on <i>x</i> line
	$S_{xy} = \Sigma xy - \frac{(\Sigma x)(\Sigma y)}{n} =$		
	$= 244260 - \frac{550 \times 3717}{10} = 39825$		
	$S_{xx} = \Sigma x^2 - \frac{(\Sigma x)^2}{n}$		
	$= 38500 - \frac{550^2}{10} = 8250$		
	$\overline{x} = 55, \ \overline{y} = 371.7$		S
	$b = \frac{S_{xy}}{S_{xx}} = \frac{39825}{8250} = 4.82727$	M1	$\frac{S_{xy}}{S_{xx}}$ used
	$a = \overline{y} - b\overline{x} = 371.7 - 4.8272755$ = 106.2		May be implied if calculator routine is used
	Equation of line is $y = 4.82727x + 106.2$	M1	Using $=\overline{y} - b\overline{x}$ with <i>their</i> b
	y = 4.82727x + 100.2 y = 4.83x + 106 (3 sf)	A1	y = 4.83x + 106.2, or correct equivalent (does not need to be in the form $y = a + bx$)
	Estimated value of $x = \frac{(220-106.2)}{4.82727}$. ,
	= 23.57438 = 23.6 (3 sf)	M1	Substitute $y = 220$ into <i>their</i> equation
		A1 6	a.r.t. 23.6
			Use of the x on y line S_{yy}
		M1	For $\frac{S_{xy}}{S_{xx}}$ used
		M1 A1	Using $\overline{x} - b'\overline{y}$ with their b' x = -21.1 + 0.205y
		M1	Substitute $y = 220$ into <i>their</i> equation
(ii)	$S_{yy} = \Sigma y^2 - \frac{(\Sigma y)^2}{n}$		
	= 1576075 - $\frac{3717^2}{10}$		
	= 194466.1 S _{xv}		Calculator of formula
	$r = \frac{S_{xy}}{\sqrt{S_{xx} * S_{yy}}}$	M1	correctly used or equivalent (may be implied)
	$= \frac{39825}{\sqrt{8250 \times 194466.1}}$		
	= 0.99427 = 0.994 (3 sf)	A1	Correct answer, a.r.t. 0.994
	This is a very high positive correlation so the estimate is likely to be reliable	B1 3	Comment consistent with <i>their r</i> value, provided r < 1

5 (i)	X~B(10, $\frac{1}{57}$)	B1) B1)	Binomial stated $n = 10$ and $p = \frac{1}{57}$ stated clearly
	Independence: whether Andy wins a particular lottery game is independent of whether he has won any other game. Two possible outcomes: for each game Andy either wins or loses.	B1 3	One valid comment in context
(ii)(a)	$P(X=2) = {}^{10}C_2 \times \left(\frac{1}{57}\right)^2 \times \left(\frac{56}{57}\right)^8$ = 0.0120217633 = 0.012	M1 M1 A1 3	Their ${}^{n}C_{2} \times p^{2} \times (1-p)^{n-2}$ used Wholly correct method a.r.t. 0.012
(b)	P(X > 2) = 1 - P(X = 0) - P(X = 1) - P(X = 2) = 1 - [0.83778 + 0.14960 + 0.01202] = 0.00059074	M1 M1 A1	1 – [P(X=0)+P(X=1)+P(X=2)] with at least 2 probs attempted Wholly correct method a.r.t. 0.0006
(iii)	= 0.000591 (3 sf) $E(X) = np = 10 \times \frac{1}{57} = \frac{10}{57}$ = 0.175438 = 0.175 (3 sf)	3 B1 1	$=\frac{10k}{57k}$ or a.r.t. 0.175

June 2004

	[1
6 (i)	Mass, <i>m</i> in kg <i>m</i> < 5 <i>m</i> < 10 <i>m</i> < 15 <i>m</i> < 20	Cumulative frequency 2 9 26 45	M1	At least one correct cumulative frequency seen, other than 2
	m < 20 m < 30 m < 50	53 60		
	Cumulative frequency	T	M1	At least 4 points correct with the correct (u.c.b., cum freq)
		20 30 40 50 60	A1	Wholly correct diagram
		Mass, m, in kg	3	
6 (ii)	From the graph		M1	Correct method for <i>either</i> the median or for <i>a</i> quartile
		CF axis at 15 (or 15.25) for Q_1 , at $_2$, at 45 (or 45.75) for Q_3	A1 A1	Their Q_2 from their CF curve, provided u.c.b's used Their IQR from their CF
			3	curve
6 (iii)		- I	M1	A recognisable attempt at a boxplot
			M1	At least 4 from 4: <i>their</i> Q_1 : <i>their</i> Q_2 <i>their</i> Q_3 : 47 correctly plotted
	0 10 20 Mas	30 40 50 s,m,in.kg	A1 3	Wholly correct diagram
6 (iv)	Comment on skew	wness, range, IQR, 5 summary d/or min values, symmetry	B1	One valid feature of data which can be deduced more easily from a boxplot, but do not allow median and/or quartiles.

2641

7 (i)	Possible routes: ABA \rightarrow prob = $\frac{2}{3} \times \frac{3}{4}$ ACA \rightarrow prob = $\frac{1}{3} \times \frac{4}{5}$ P(back at A) = $\frac{1}{2} + \frac{4}{15} = \frac{15}{30} + \frac{8}{30}$ = $\frac{23}{30}$ AG	M1 M1 A1 3	One correct product seen Both correct routes identified (letters, probs, tree diagram) and one correct product. No other routes allowed. Wholly convincing and correct
7 (ii)	Possible routes= ABCA or ACBA So prob = $\frac{2}{3} \times \frac{1}{4} \times \frac{4}{5} + \frac{1}{3} \times \frac{1}{5} \times \frac{3}{4}$ = $\frac{2}{15} + \frac{1}{20} = \frac{8}{60} + \frac{3}{60}$ = $\frac{11}{60}$ or 0.183 = 0.183 (3 sf)	M1 M1 M1 A1 4	One correct route identified Both correct routes identified and one correct product Wholly correct method (no other routes) $\frac{11k}{60k}$ or a.r.t. 0.183
7 (iii)	Possible routes ACBCB $\rightarrow \frac{1}{3} \times \frac{1}{5} \times \frac{1}{4} \times \frac{1}{5}$ ACBAB $\rightarrow \frac{1}{3} \times \frac{1}{5} \times \frac{3}{4} \times \frac{2}{3}$ ACACB $\rightarrow \frac{1}{3} \times \frac{4}{5} \times \frac{1}{3} \times \frac{1}{5}$ ABACB $\rightarrow \frac{2}{3} \times \frac{3}{4} \times \frac{1}{3} \times \frac{1}{5}$ ABCAB $\rightarrow \frac{2}{3} \times \frac{1}{4} \times \frac{4}{5} \times \frac{2}{3}$ $= \frac{1}{300} + \frac{1}{30} + \frac{4}{225} + \frac{1}{30} + \frac{4}{45} = \frac{53}{300} =$	M1 M1 M1 M1	At least 4 correct routes chosen 2 correct routes identified and one correct 4-termed product 3 correct products all products correct and added (no other routes)
7 (iii)	0.176666. = 0.177 (3 s.f.) ALITER: (i) $\times \frac{1}{3} \times \frac{1}{5} +$ (ii) $\times \frac{2}{3} + \frac{1}{3} \times \frac{1}{5} \times \frac{1}{4} \times \frac{1}{5}$	A1 5	53 <i>k</i> 300 <i>k</i> or a.r.t. 0.177